523 research outputs found

    Insensitivity of alkenone carbon isotopes to atmospheric CO<sub>2</sub> at low to moderate CO<sub>2</sub> levels

    Get PDF
    Atmospheric pCO2 is a critical component of the global carbon system and is considered to be the major control of Earth’s past, present and future climate. Accurate and precise reconstructions of its concentration through geological time are, therefore, crucial to our understanding of the Earth system. Ice core records document pCO2 for the past 800 kyrs, but at no point during this interval were CO2 levels higher than today. Interpretation of older pCO2 has been hampered by discrepancies during some time intervals between two of the main ocean-based proxy methods used to reconstruct pCO2: the carbon isotope fractionation that occurs during photosynthesis as recorded by haptophyte biomarkers (alkenones) and the boron isotope composition (δ11B) of foraminifer shells. Here we present alkenone and δ11B-based pCO2 reconstructions generated from the same samples from the Plio-Pleistocene at ODP Site 999 across a glacial-interglacial cycle. We find a muted response to pCO2 in the alkenone record compared to contemporaneous ice core and δ11B records, suggesting caution in the interpretation of alkenone-based records at low pCO2 levels. This is possibly caused by the physiology of CO2 uptake in the haptophytes. Our new understanding resolves some of the inconsistencies between the proxies and highlights that caution may be required when interpreting alkenone-based reconstructions of pCO2

    Future climate forcing potentially without precedent in the last 420 million years

    Get PDF
    The evolution of Earth's climate on geological timescales is largely driven by variations in the magnitude of total solar irradiance (TSI) and changes in the greenhouse gas content of the atmosphere. Here we show that the slow ∼50 Wm(−2) increase in TSI over the last ∼420 million years (an increase of ∼9 Wm(−2) of radiative forcing) was almost completely negated by a long-term decline in atmospheric CO(2). This was likely due to the silicate weathering-negative feedback and the expansion of land plants that together ensured Earth's long-term habitability. Humanity's fossil-fuel use, if unabated, risks taking us, by the middle of the twenty-first century, to values of CO(2) not seen since the early Eocene (50 million years ago). If CO(2) continues to rise further into the twenty-third century, then the associated large increase in radiative forcing, and how the Earth system would respond, would likely be without geological precedent in the last half a billion years

    Large-scale culturing of Neogloboquadrina pachyderma, its growth in, and tolerance of, variable environmental conditions

    Get PDF
    The planktic foraminifera Neogloboquadrina pachyderma is a calcifying marine protist and the dominant planktic foraminifera species in the polar oceans, making it a key species in marine polar ecosystems. The calcium carbonate shells of foraminifera are widely used in palaeoclimate studies because their chemical composition reflects the seawater conditions in which they grow. This species provides unique proxy data for past surface ocean hydrography, which can provide valuable insight to future climate scenarios. However, little is known about the response of N. pachyderma to variable and changing environmental conditions. Here, we present observations from large-scale culturing experiments where temperature, salinity and carbonate chemistry were altered independently. We observed overall low mortality, calcification of new chambers and addition of secondary calcite crust in all our treatments. In-culture asexual reproduction events also allowed us to monitor the variable growth of N. pachyderma’s offspring. Several specimens had extended periods of dormancy or inactivity after which they recovered. These observations suggest that N. pachyderma can tolerate, adapt to and calcify within a wide range of environmental conditions. This has implications for the species-level response to ocean warming and acidification, for future studies aiming to culture N. pachyderma and use in palaeoenvironmental reconstruction

    Intrareef variations in Li/Mg and Sr/Ca sea surface temperature proxies in the Caribbean reef‐building coral Siderastrea siderea

    Get PDF
    Caribbean sea surface temperatures (SSTs) have increased at a rate of 0.2°C per decade since 1971, a rate double that of the mean global change. Recent investigations of the coral Siderastrea siderea on the Belize Mesoamerican Barrier Reef System (MBRS) have demonstrated that warming over the last 30 years has had a detrimental impact on calcification. Instrumental temperature records in this region are sparse, making it necessary to reconstruct longer SST records indirectly through geochemical temperature proxies. Here we investigate the skeletal Sr/Ca and Li/Mg ratios of S. siderea from two distinct reef zones (forereef and backreef) of the MBRS. Our field calibrations of S. siderea show that Li/Mg and Sr/Ca ratios are well correlated with temperature, although both ratios are 3 times more sensitive to temperature change in the forereef than in the backreef. These differences suggest that a secondary parameter also influences these SST proxies, highlighting the importance for site‐ and species‐specific SST calibrations. Application of these paleothermometers to downcore samples reveals highly uncertain reconstructed temperatures in backreef coral, but well‐matched reconstructed temperatures in forereef coral, both between Sr/Ca‐SSTs and Li/Mg‐SSTs, and in comparison to the Hadley Centre Sea Ice and Sea Surface Temperature record. Reconstructions generated from a combined Sr/Ca and Li/Mg multiproxy calibration improve the precision of these SST reconstructions. This result confirms that there are circumstances in which both Li/Mg and Sr/Ca are reliable as stand‐alone and combined proxies of sea surface temperature. However, the results also highlight that high‐precision, site‐specific calibrations remain critical for reconstructing accurate SSTs from coral‐based elemental proxies

    Intrareef variations in Li/Mg and Sr/Ca sea surface temperature proxies in the Caribbean reef-building coral Siderastrea siderea

    Get PDF
    Caribbean sea surface temperatures (SSTs) have increased at a rate of 0.2°C per decade since 1971, a rate double that of the mean global change. Recent investigations of the coral Siderastrea siderea on the Belize Mesoamerican Barrier Reef System (MBRS) have demonstrated that warming over the last 30 years has had a detrimental impact on calcification. Instrumental temperature records in this region are sparse, making it necessary to reconstruct longer SST records indirectly through geochemical temperature proxies. Here we investigate the skeletal Sr/Ca and Li/Mg ratios of S. siderea from two distinct reef zones (forereef and backreef) of the MBRS. Our field calibrations of S. siderea show that Li/Mg and Sr/Ca ratios are well correlated with temperature, although both ratios are 3 times more sensitive to temperature change in the forereef than in the backreef. These differences suggest that a secondary parameter also influences these SST proxies, highlighting the importance for site‐ and species‐specific SST calibrations. Application of these paleothermometers to downcore samples reveals highly uncertain reconstructed temperatures in backreef coral, but well‐matched reconstructed temperatures in forereef coral, both between Sr/Ca‐SSTs and Li/Mg‐SSTs, and in comparison to the Hadley Centre Sea Ice and Sea Surface Temperature record. Reconstructions generated from a combined Sr/Ca and Li/Mg multiproxy calibration improve the precision of these SST reconstructions. This result confirms that there are circumstances in which both Li/Mg and Sr/Ca are reliable as stand‐alone and combined proxies of sea surface temperature. However, the results also highlight that high‐precision, site‐specific calibrations remain critical for reconstructing accurate SSTs from coral‐based elemental proxies

    The first report of Listeria monocytogenes detected in pinnipeds

    Get PDF
    The aim of this study was to describe the pathology in seals from which Listeria monocytogenes was isolated and investigate if the lesions’ nature and severity were related to the phylogeny of isolates. L. monocytogenes was isolated from 13 of 50 (26%) dead grey seal (Halichoerus grypus) pups, six (12%) in systemic distribution, on the Isle of May, Scotland. Similar fatal L. monocytogenes-associated infections were found in a grey seal pup from Carnoustie, Scotland, and a juvenile harbour seal (Phoca vitulina) in the Netherlands. Whole genome sequencing of 15 of the L. monocytogenes isolates identified 13 multilocus sequence types belonging to the L. monocytogenes lineages I and II, but with scant phenotypic and genotypic antimicrobial resistance and limited variation in virulence factors. The phylogenetic diversity present suggests there are multiple sources of L. monocytogenes, even for seal pups born in the same colony and breeding season. This is the first description of L. monocytogenes isolated from, and detected in lesions in, pinnipeds and indicates that infection can be systemic and fatal. Therefore, listeriosis may be an emerging or overlooked disease in seals with infection originating from contamination of the marine environment.</p

    Placing our current 'hyperthermal' in the context of rapid climate change in our geological past

    Get PDF
    ‘ ... there are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don’t know. But there are also unknown unknowns. There are things we don’t know we don’t know.’ Donald Rumsfeld 12th February 2002. This article is part of a discussion meeting issue ‘Hyperthermals: rapid and extreme global warming in our geological past’

    Palaeogeographic controls on climate and proxy interpretation

    Get PDF
    During the period from approximately 150 to 35?million years ago, the Cretaceous–Paleocene–Eocene (CPE), the Earth was in a “greenhouse” state with little or no ice at either pole. It was also a period of considerable global change, from the warmest periods of the mid-Cretaceous, to the threshold of icehouse conditions at the end of the Eocene. However, the relative contribution of palaeogeographic change, solar change, and carbon cycle change to these climatic variations is unknown. Here, making use of recent advances in computing power, and a set of unique palaeogeographic maps, we carry out an ensemble of 19 General Circulation Model simulations covering this period, one simulation per stratigraphic stage. By maintaining atmospheric CO2 concentration constant across the simulations, we are able to identify the contribution from palaeogeographic and solar forcing to global change across the CPE, and explore the underlying mechanisms. We find that global mean surface temperature is remarkably constant across the simulations, resulting from a cancellation of opposing trends from solar and palaeogeographic change. However, there are significant modelled variations on a regional scale. The stratigraphic stage–stage transitions which exhibit greatest climatic change are associated with transitions in the mode of ocean circulation, themselves often associated with changes in ocean gateways, and amplified by feedbacks related to emissivity and planetary albedo. We also find some control on global mean temperature from continental area and global mean orography. Our results have important implications for the interpretation of single-site palaeo proxy records. In particular, our results allow the non-CO2 (i.e. palaeogeographic and solar constant) components of proxy records to be removed, leaving a more global component associated with carbon cycle change. This “adjustment factor” is used to adjust sea surface temperatures, as the deep ocean is not fully equilibrated in the model. The adjustment factor is illustrated for seven key sites in the CPE, and applied to proxy data from Falkland Plateau, and we provide data so that similar adjustments can be made to any site and for any time period within the CPE. Ultimately, this will enable isolation of the CO2-forced climate signal to be extracted from multiple proxy records from around the globe, allowing an evaluation of the regional signals and extent of polar amplification in response to CO2 changes during the CPE. Finally, regions where the adjustment factor is constant throughout the CPE could indicate places where future proxies could be targeted in order to reconstruct the purest CO2-induced temperature change, where the complicating contributions of other processes are minimised. Therefore, combined with other considerations, this work could provide useful information for supporting targets for drilling localities and outcrop studies

    The pH dependency of the boron isotopic composition of diatom opal (Thalassiosira weissflogii)

    Get PDF
    The high-latitude oceans are key areas of carbon and heat exchange between the atmosphere and the ocean. As such, they are a focus of both modern oceanographic and palaeoclimate research. However, most palaeoclimate proxies that could provide a long-term perspective are based on calcareous organisms, such as foraminifera, that are scarce or entirely absent in deep-sea sediments south of 50∘ S in the Southern Ocean and north of 40∘ N in the North Pacific. As a result, proxies need to be developed for the opal-based organisms (e.g. diatoms) found at these high latitudes, which dominate the biogenic sediments recovered from these regions. Here we present a method for the analysis of the boron (B) content and isotopic composition (δ11B) of diatom opal. We apply it for the first time to evaluate the relationship between seawater pH, δ11B and B concentration ([B]) in the frustules of the diatom Thalassiosira weissflogii, cultured across a range of carbon dioxide partial pressure (pCO2) and pH values. In agreement with existing data, we find that the [B] of the cultured diatom frustules increases with increasing pH (Mejía et al., 2013). δ11B shows a relatively well defined negative trend with increasing pH, completely distinct from any other biomineral previously measured. This relationship not only has implications for the magnitude of the isotopic fractionation that occurs during boron incorporation into opal, but also allows us to explore the potential of the boron-based proxies for palaeo-pH and palaeo-CO2 reconstruction in high-latitude marine sediments that have, up until now, eluded study due to the lack of suitable carbonate material

    A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera

    Get PDF
    The work was supported by NERC grants NE/I006176/1 (Gavin L. Foster and Caroline H. Lear), NE/H006273/1 (Gavin L. Foster), NE/I006168/1 and NE/K014137/1 and a Royal Society Research Merit Award (Paul A. Wilson), a NERC Independent Research Fellowship NE/K00901X/1 (Mathis P. Hain) and a NERC studentship (Rosanna Greenop).The boron isotope composition (δ11B) of foraminiferal calcite reflects the pH and the boron isotope composition of the seawater the foraminifer grew in. For pH reconstructions, the δ11B of seawater must therefore be known, but information on this parameter is limited. Here we reconstruct Neogene seawater δ11B based on the δ11B difference between paired measurements of planktic and benthic foraminifera and an estimate of the coeval water column pH gradient from their δ13C values. Carbon cycle model simulations underscore that the ΔpH-Δδ13C relationship is relatively insensitive to ocean and carbon cycle changes, validating our approach. Our reconstructions suggest that δ11Bsw was ∼37.5‰ during the early and middle Miocene (roughly 23-12 Ma) and rapidly increased during the late Miocene (between 12 and 5 Ma) towards the modern value of 39.61 ‰. Strikingly, this pattern is similar to the evolution of the seawater isotope composition of Mg, Li and Ca, suggesting a common forcing mechanism. Based on the observed direction of change, we hypothesize that an increase in secondary mineral formation during continental weathering affected the isotope composition of riverine input to the ocean since 14 Ma.Publisher PDFPeer reviewe
    corecore